Vertex-coloring 2-edge-weighting of graphs

نویسندگان

  • Hongliang Lu
  • Qinglin Yu
  • Cun-Quan Zhang
چکیده

A k-edge-weighting w of a graph G is an assignment of an integer weight, w(e) ∈ {1, . . . , k}, to each edge e. An edge weighting naturally induces a vertex coloring c by defining c(u) = ∑ u∼e w(e) for every u ∈ V (G). A k-edge-weighting of a graph G is vertexcoloring if the induced coloring c is proper, i.e., c(u) ≠ c(v) for any edge uv ∈ E(G). Given a graph G and a vertex coloring c0, does there exist an edge-weighting such that the induced vertex coloring is c0? We investigate this problem by considering edge-weightings defined on an abelian group. It was proved that every 3-colorable graph admits a vertexcoloring 3-edge-weighting (Karoński et al. (2004) [12]). Does every 2-colorable graph (i.e., bipartite graphs) admit a vertex-coloring 2edge-weighting?We obtain several simple sufficient conditions for graphs to be vertex-coloring 2-edge-weighting. In particular, we show that 3-connected bipartite graphs admit vertex-coloring 2edge-weighting. © 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

Vertex-Coloring Edge-Weighting of Bipartite Graphs with Two Edge Weights

It was proved that every 3-connected bipartite graph admits a vertex-coloring S-edge-weighting for S = {1, 2} (H. Lu, Q. Yu and C. Zhang, Vertex-coloring 2-edge-weighting of graphs, European J. Combin., 32 (2011), 22-27). In this paper, we show that every 2-connected and 3-edge-connected bipartite graph admits a vertex-coloring S-edgeweighting for S ∈ {{0, 1}, {1, 2}}. These bounds we obtain ar...

متن کامل

Vertex-coloring edge-weightings of graphs

A k-edge-weighting of a graph G is a mapping w : E(G) → {1, 2, . . . , k}. An edgeweighting w induces a vertex coloring fw : V (G) → N defined by fw(v) = ∑ v∈e w(e). An edge-weighting w is vertex-coloring if fw(u) 6= fw(v) for any edge uv. The current paper studies the parameter μ(G), which is the minimum k for which G has a vertexcoloring k-edge-weighting. Exact values of μ(G) are determined f...

متن کامل

A practical algorithm for [r, s, t]-coloring of graph

Coloring graphs is one of important and frequently used topics in diverse sciences. In the majority of the articles, it is intended to find a proper bound for vertex coloring, edge coloring or total coloring in the graph. Although it is important to find a proper algorithm for graph coloring, it is hard and time-consuming too. In this paper, a new algorithm for vertex coloring, edge coloring an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011